A Decomposition Heuristic for the Maximal Covering Location Problem
نویسندگان
چکیده
This paper proposes a cluster partitioning technique to calculate improved upper bounds to the optimal solution of maximal covering location problems. Given a covering distance, a graph is built considering as vertices the potential facility locations, and with an edge connecting each pair of facilities that attend a same client. Coupling constraints, corresponding to some edges of this graph, are identified and relaxed in the Lagrangean way, resulting in disconnected subgraphs representing smaller subproblems that are computationally easier to solve by exact methods. The proposed technique is compared to the classical approach, using real data and instances from the available literature.
منابع مشابه
A New Heuristic Solution Method for Maximal Covering Location-Allocation Problem with M/M/1 Queueing System
We consider the queueing maximal covering location-allocation problem (QM-CLAP) with an M/M/1 queueing system. We propose a new solution procedure based on decomposition of the problem into smaller sub-problems. We solve the resulting sub-problems both with a branch and bound algorithm and with the meta-heuristic GRASP. We also solve the entire model with GRASP. Computational results for these ...
متن کاملMathematical Model for Bi-objective Maximal Hub Covering Problem with Periodic Variations of Parameters
The problem of maximal hub covering as a challenging problem in operation research. Transportation programming seeks to find an optimal location of a set of hubs to reach maximum flow in a network. Since the main structure's parameters of the problem such as origin-destination flows, costs and travel time, change periodically in the real world applications, new issues arise in handling it. In t...
متن کاملMaximal covering location-allocation problem with M/M/k queuing system and side constraints
We consider the maximal covering location-allocation problem with multiple servers. The objective is to maximize the population covered, subject to constraints on the number of service centers, total number of servers in all centers, and the average waiting time at each center. Each center operates as an M/M/k queuing system with variable number of servers. The total costs of establishing cen...
متن کاملGeneral form of a cooperative gradual maximal covering location problem
Cooperative and gradual covering are two new methods for developing covering location models. In this paper, a cooperative maximal covering location–allocation model is developed (CMCLAP). In addition, both cooperative and gradual covering concepts are applied to the maximal covering location simultaneously (CGMCLP). Then, we develop an integrated form of a cooperative gradual maximal covering ...
متن کاملمدلبندی و حل مساله ماکزیمم پوشش p -هاب تک تخصیصی با پوشش تدریجی
P-hub maximal covering location problem is one of the most commonly used location- allocation problems. In this problem, the goal is to determine the best location for the hubs such that the covered demand is maximized by considering the predefined coverage radius. In classical hub problems, if the distance between the origin and destination is less than this radius, coverage is possible; other...
متن کاملEfficient Solution Procedure to Develop Maximal Covering Location Problem Under Uncertainty (Using GA and Simulation)
In this paper, we present the stochastic version of Maximal Covering Location Problem which optimizes both location and allocation decisions, concurrently. It’s assumed that traveling time between customers and distribution centers (DCs) is uncertain and described by normal distribution function and if this time is less than coverage time, the customer can be allocated to DC. In classical mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Operations Research
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010